Coloring Random Triangulations

نویسنده

  • P. Di Francesco
چکیده

We introduce and solve a two-matrix model for the tri-coloring problem of the vertices of a random triangulation. We present three different solutions: (i) by orthogonal polynomial techniques (ii) by use of a discrete Hirota bilinear equation (iii) by direct expansion. The model is found to lie in the universality class of pure two-dimensional quantum gravity, despite the non-polynomiality of its potential. P.A.C.S. numbers: 05.20.y, 04.60.Nc –

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3-Colorability of Pseudo-Triangulations

Deciding 3-colorability for general plane graphs is known to be an NP-complete problem. However, for certain classes of plane graphs, like triangulations, polynomial time algorithms exist. We consider the family of pseudo-triangulations (a generalization of triangulations) and prove NP-completeness for this class. The complexity status does not change if the maximum face-degree is bounded to fo...

متن کامل

Acyclic Colorings and Triangulations of Weakly Chordal Graphs

An acyclic coloring of a graph is a proper vertex coloring without bichromatic cycles. We show that the acyclic colorings of any weakly chordal graph G correspond to the proper colorings of triangulations of G. As a consequence, we obtain polynomial-time algorithms for the acyclic coloring problem and the perfect phylogeny problem on the class of weakly chordal graphs. Our results also imply li...

متن کامل

The Scaling Limit of Random Simple Triangulations and Random Simple Quadrangulations

The scaling limit of random simple triangulations and random simple quadrangulations . . . . . . . . . . . . . LOUIGI ADDARIO-BERRY AND MARIE ALBENQUE 2767 Recurrence and transience for the frog model on trees CHRISTOPHER HOFFMAN, TOBIAS JOHNSON AND MATTHEW JUNGE 2826 Stochastic De Giorgi iteration and regularity of stochastic partial differential equations ELTON P. HSU, YU WANG AND ZHENAN WANG...

متن کامل

5-Chromatic even triangulations on surfaces

A triangulation is said to be even if each vertex has even degree. It is known that every even triangulation on any orientable surface with sufficiently large representativity is 4-colorable [J. Hutchinson, B. Richter, P. Seymour, Colouring Eulerian triangulations, J. Combin. Theory, Ser. B 84 (2002) 225–239], but all graphs on any surface with large representativity are 5-colorable [C. Thomass...

متن کامل

A New Kempe Invariant and the (non)-ergodicity of the Wang–swendsen–kotecký Algorithm

We prove that for the class of three-colorable triangulations of a closed oriented surface, the degree of a four-coloring modulo 12 is an invariant under Kempe changes. We use this general result to prove that for all triangulations T (3L, 3M) of the torus with 3 ≤ L ≤ M , there are at least two Kempe equivalence classes. This result implies in particular that the Wang–Swendsen–Kotecký algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997